A Preliminary Study on the Use of Fuzzy Rough Set Based Feature Selection for Improving Evolutionary Instance Selection Algorithms
نویسندگان
چکیده
In recent years, the increasing interest in fuzzy rough set theory has allowed the definition of novel accurate methods for feature selection. Although their stand-alone application can lead to the construction of high quality classifiers, they can be improved even more if other preprocessing techniques, such as instance selection, are considered. With the aim of enhancing the nearest neighbor classifier, we present a hybrid algorithm for instance and feature selection, where evolutionary search in the instances’ space is combined with a fuzzy rough set based feature selection procedure. The preliminary results, contrasted through nonparametric statistical tests, suggest that our proposal can improve greatly the performance of the preprocessing techniques in isolation.
منابع مشابه
Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملA hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملEnhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection
In recent years, fuzzy rough set theory has emerged as a suitable tool for performing feature selection. Fuzzy rough feature selection enables us to analyze the discernibility of the attributes, highlighting the most attractive features in the construction of classifiers. However, its results can be enhanced even more if other data reduction techniques, such as instance selection, are considere...
متن کاملIFSB-ReliefF: A New Instance and Feature Selection Algorithm Based on ReliefF
Increasing the use of Internet and some phenomena such as sensor networks has led to an unnecessary increasing the volume of information. Though it has many benefits, it causes problems such as storage space requirements and better processors, as well as data refinement to remove unnecessary data. Data reduction methods provide ways to select useful data from a large amount of duplicate, incomp...
متن کاملFuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection
Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...
متن کامل